Abstract
The preservation of natural assets is nowadays an essential commitment. In this regard, root systems are endangered by fungal diseases which can undermine the health and stability of trees. Within this framework, Ground Penetrating Radar (GPR) is emerging as a reliable non-destructive method for root investigation. A coherent GPR-based root-detection framework is presented in this paper. The proposed methodology is a multi-stage data analysis system that is applied to semi-circular measurements collected around the investigated tree. In the first step, the raw data are processed by applying several standard and advanced signal processing techniques, to reduce noise-related information. In the second stage, the presence of any discontinuity element within the survey area is investigated by analysing the signal reflectivity. Then, a tracking algorithm aimed at identifying patterns compatible with tree roots is implemented. Finally, the mass density of roots is estimated by means of continuous functions, to achieve a more realistic representation of the root paths and to identify their length in a continuous and more realistic domain. The method was validated in a case study in London (UK), where the root system of a real tree was surveyed using GPR and a soil test pit was excavated for validation purposes. Results support the feasibility of the data processing framework implemented in this study.
| Original language | English |
|---|---|
| Article number | 3417 |
| Journal | Remote Sensing |
| Volume | 12 |
| Issue number | 20 |
| Early online date | 18 Oct 2020 |
| DOIs | |
| Publication status | Published - 18 Oct 2020 |
Bibliographical note
Note: This work was supported by Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The WyfoldCharitable Trust.Keywords
- assessment of tree roots
- Ground Penetrating Radar (GPR)
- Tree root mapping
- Tree root mass density
- Multi-stage data processing framework
- Computer science and informatics