TY - JOUR
T1 - Doctor, what does my positive test mean? From Bayesian textbook tasks to personalized risk communication
AU - Navarrete, Gorka
AU - Correia, Rut
AU - Sirota, Miroslav
AU - Juanchich, Marie
AU - Huepe, David
PY - 2015
Y1 - 2015
N2 - Most of the research on Bayesian reasoning aims to answer theoretical questions about the extent to which people are able to update their beliefs according to Bayes' Theorem, about the evolutionary nature of Bayesian inference, or about the role of cognitive abilities in Bayesian inference. Few studies aim to answer practical, mainly health-related questions, such as, "What does it mean to have a positive test in a context of cancer screening?" or "What is the best way to communicate a medical test result so a patient will understand it?". This type of research aims to translate empirical findings into effective ways of providing risk information. In addition, the applied research often adopts the paradigms and methods of the theoretically-motivated research. But sometimes it works the other way around, and the theoretical research borrows the importance of the practical question in the medical context. The study of Bayesian reasoning is relevant to risk communication in that, to be as useful as possible, applied research should employ specifically tailored methods and contexts specific to the recipients of the risk information. In this paper, we concentrate on the communication of the result of medical tests and outline the epidemiological and test parameters that affect the predictive power of a test-whether it is correct or not. Building on this, we draw up recommendations for better practice to convey the results of medical tests that could inform health policy makers (What are the drawbacks of mass screenings?), be used by health practitioners and, in turn, help patients to make better and more informed decisions.
AB - Most of the research on Bayesian reasoning aims to answer theoretical questions about the extent to which people are able to update their beliefs according to Bayes' Theorem, about the evolutionary nature of Bayesian inference, or about the role of cognitive abilities in Bayesian inference. Few studies aim to answer practical, mainly health-related questions, such as, "What does it mean to have a positive test in a context of cancer screening?" or "What is the best way to communicate a medical test result so a patient will understand it?". This type of research aims to translate empirical findings into effective ways of providing risk information. In addition, the applied research often adopts the paradigms and methods of the theoretically-motivated research. But sometimes it works the other way around, and the theoretical research borrows the importance of the practical question in the medical context. The study of Bayesian reasoning is relevant to risk communication in that, to be as useful as possible, applied research should employ specifically tailored methods and contexts specific to the recipients of the risk information. In this paper, we concentrate on the communication of the result of medical tests and outline the epidemiological and test parameters that affect the predictive power of a test-whether it is correct or not. Building on this, we draw up recommendations for better practice to convey the results of medical tests that could inform health policy makers (What are the drawbacks of mass screenings?), be used by health practitioners and, in turn, help patients to make better and more informed decisions.
KW - Psychology
KW - bayesian reasoning
KW - bayesian textbook tasks
KW - medical tests
KW - positive predictive value
KW - risk communication
UR - http://www.ncbi.nlm.nih.gov/pubmed/26441711
U2 - 10.3389/fpsyg.2015.01327
DO - 10.3389/fpsyg.2015.01327
M3 - Article
C2 - 26441711
SN - 1664-1078
VL - 6
JO - Frontiers in Psychology: Cognition
JF - Frontiers in Psychology: Cognition
IS - 1327
ER -