Forecasting demand of emergency care

Simon Andrew Jones, Mark Patrick Joy, Jon Pearson

Research output: Contribution to journalArticlepeer-review

Abstract

This paper describes a model that can forecast the daily number of occupied beds due to emergency admissions in an acute hospital. Out of sample forecasts 32 day days in advance. have an RMS error of 3% of the mean number of beds used for emergency admissions. We find that the number of occupied beds due to emergency admissions is related to both air temperature and PHLS data on influenza like illnesses. We find that a period of high volatility, indicated by GARCH errors, will result in an increase in waiting times in the A&E Department. Furthermore. volatility gives more warning of waiting times in A&E than total bed occupancy.
Original languageEnglish
Pages (from-to)297-305
JournalHealth Care Management Science
Volume5
Issue number4
Publication statusPublished - Nov 2002
Externally publishedYes

Keywords

  • Allied health professions and studies

Fingerprint

Dive into the research topics of 'Forecasting demand of emergency care'. Together they form a unique fingerprint.

Cite this