TY - JOUR
T1 - Method for simultaneous analysis of eight analogues of vitamin D using liquid chromatography tandem mass spectrometry
AU - Shah, Iltaf
AU - Petroczi, Andrea
AU - Naughton, Declan P.
PY - 2012/10/1
Y1 - 2012/10/1
N2 - Background
Despite considerable global investigation over several decades, the roles of vitamin D in health and disease development remains convoluted. One recognised issue is the difficulty of accurately measuring the active forms of vitamin D. Advances made include some new methods addressing the potential interference by excluding epimers and isobars. However, there is no evidence that epimers are without function. Therefore, the aim of this study was to develop and validate, for the first time, a new assay to simultaneously measure levels of 6 forms of vitamin D along with two epimers. The assay was applied to multilevel certified reference material calibrators and 25 pooled human sera samples obtained from the Vitamin D External Quality Assessment Scheme (DEQAS) to demonstrate its efficiency.
Results
The assay is capable of simultaneously measuring 8 vitamin D analogues over the calibration ranges and LODs (in nmol/L) of: 1alpha25(OH)2D2 [0.015-1; 0.01], 1alpha25(OH)2D3 [0.1-100; 0.01], 25OHD3 [0.5-100, 0.025], 3-epi-25OHD3 [0.1-100, 0.05], 25OHD2 [0.5-100, 0.025], 3-epi-25OHD2 [0.1-100, 0.05], vitamin D3 [0.5-100, 0.05] and vitamin D2 [0.5-100, 0.05], using stanozolol-d3 as internal standard. Certified reference material calibrators and external quality control samples (DEQAS) were analysed to meet the standards outlined by National Institute of Standards and Technology (NIST). Validation steps included recovery and both precision and accuracy under inter- and intra-day variation limit of detection, and analysis of each analyte over a linear range. All validation parameters were in line with acceptable Food and Drug Administration (FDA) guidelines and the standards of the National Institute of Standards and Technology (NIST). All eight analogues were quantified with the 25OHD levels being commensurate with DEQAS data.
Conclusions
This report details the application of a new LC-MS/MS based assay for the efficient analysis of eight analogues of vitamin D over a range of samples, which is a significant advance over the existing methods. Simultaneous measure of 8 vitamin D analogues does not compromise the analytical capability of the assay to quantify the commonly used biomarker (25OHD) for vitamin D status. The results demonstrate the feasibility of applying the assay in research and clinical practice that i) excludes misleading measures owing to epimers and isobars and ii) is able to quantify the excluded component to facilitate further in vivo investigation into the roles of ubiquitous epimers.
AB - Background
Despite considerable global investigation over several decades, the roles of vitamin D in health and disease development remains convoluted. One recognised issue is the difficulty of accurately measuring the active forms of vitamin D. Advances made include some new methods addressing the potential interference by excluding epimers and isobars. However, there is no evidence that epimers are without function. Therefore, the aim of this study was to develop and validate, for the first time, a new assay to simultaneously measure levels of 6 forms of vitamin D along with two epimers. The assay was applied to multilevel certified reference material calibrators and 25 pooled human sera samples obtained from the Vitamin D External Quality Assessment Scheme (DEQAS) to demonstrate its efficiency.
Results
The assay is capable of simultaneously measuring 8 vitamin D analogues over the calibration ranges and LODs (in nmol/L) of: 1alpha25(OH)2D2 [0.015-1; 0.01], 1alpha25(OH)2D3 [0.1-100; 0.01], 25OHD3 [0.5-100, 0.025], 3-epi-25OHD3 [0.1-100, 0.05], 25OHD2 [0.5-100, 0.025], 3-epi-25OHD2 [0.1-100, 0.05], vitamin D3 [0.5-100, 0.05] and vitamin D2 [0.5-100, 0.05], using stanozolol-d3 as internal standard. Certified reference material calibrators and external quality control samples (DEQAS) were analysed to meet the standards outlined by National Institute of Standards and Technology (NIST). Validation steps included recovery and both precision and accuracy under inter- and intra-day variation limit of detection, and analysis of each analyte over a linear range. All validation parameters were in line with acceptable Food and Drug Administration (FDA) guidelines and the standards of the National Institute of Standards and Technology (NIST). All eight analogues were quantified with the 25OHD levels being commensurate with DEQAS data.
Conclusions
This report details the application of a new LC-MS/MS based assay for the efficient analysis of eight analogues of vitamin D over a range of samples, which is a significant advance over the existing methods. Simultaneous measure of 8 vitamin D analogues does not compromise the analytical capability of the assay to quantify the commonly used biomarker (25OHD) for vitamin D status. The results demonstrate the feasibility of applying the assay in research and clinical practice that i) excludes misleading measures owing to epimers and isobars and ii) is able to quantify the excluded component to facilitate further in vivo investigation into the roles of ubiquitous epimers.
KW - 25-hydroxyvitamin-d2
KW - 25-hydroxyvitamin-d3
KW - 3-epi-25ohd2
KW - 3-epi-25ohd3
KW - Allied health professions and studies
KW - analyses
KW - epimer
KW - lc-ms/ms
KW - vitamin D
UR - http://www.ncbi.nlm.nih.gov/pubmed/23025817
U2 - 10.1186/1752-153X-6-112
DO - 10.1186/1752-153X-6-112
M3 - Article
C2 - 23025817
SN - 1752-153X
VL - 6
JO - Chemistry Central Journal
JF - Chemistry Central Journal
IS - 112
ER -